Short Communication

Relative rate constants for the reactions of $O(^1D)$ atoms with fluorochlorocarbons and with N_2O

R. G. GREEN* and R. P. WAYNE

Physical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford (Gt. Britain)

(Received August 6, 1976; in revised form November 5, 1976)

The possibility that stratospheric ozone may be depleted by a catalytic chain cycle involving Cl and ClO has recently been explored in detail (see Molina and Rowland [1] for a review). Sources of the Cl (or ClO) radicals include photolysis, in the stratosphere, of man-made chlorofluorocarbons (FCCs). An alternative route for production of ClO from the FCCs is chlorine abstraction by excited atomic oxygen, $O(^{1}D)$. This process may be exemplified for CF₂Cl₂:

$$CF_2Cl_2 + O(^1D) \rightarrow ClO + CF_2Cl \tag{1}$$

The O(¹D) in the lower stratosphere is largely formed as a product of ozone photolysis at $\lambda < 310$ nm.

To correctly model the effects on atmospheric ozone concentrations of release of FCCs, it is clearly necessary to know the rate constants for the reactions of $O(^{1}D)$ with the FCCs. In the present communication, we describe determinations of the rate constants for the reactions of $O(^{1}D)$ with nine fluoro (chloro) carbons. The rate constants were measured, in a static, competitive, experiment, relative to the rate constants for the reaction of $O(^{1}D)$ with N₂O.

Experimental

Excited oxygen atoms, $O(^{1}D)$, were usually generated by the photolysis of NO₂ at $\lambda = 229$ nm, although, in a few experiments, the atoms were produced by O₃ photolysis at $\lambda = 254$ nm. A pair of Cd lamps (Philips 93107E) with Cl₂ filters (5 cm path, 1 atm. pressure) were used as the source of $\lambda =$ 229 nm radiation, while a low pressure Hg lamp (Hanovia) with a similar Cl₂ filter was used as the $\lambda = 254$ nm source.

The photolyses were conducted in an X-shaped reaction cell; it was equipped with Suprasil windows for photolysis and NaCl windows for infrared absorption measurements.

^{*}On secondment from: Imperial Chemical Industries Ltd., Mond Division, Runcorn, Cheshire (Gt. Britain).

Nitrogen dioxide and nitrous oxide were obtained from cylinders (BDH); the stated purities were: $NO_2 > 99.5\%$, $N_2O > 98\%$. Ozone was prepared by the action of an electric discharge in O_2 , followed by adsorption on silica gel at 196K and subsequent desorption at room temperature. Purities (measured from the optical absorption) were typically 90%. Halocarbon purity was checked by gas chromatography and mass spectroscopy and was >99.7% (except CF₃CHCl₂, whose purity was 98%). All reactions were carried out at room temperature (297 ± 3K). Typical reaction conditions used were: NO_2 , ~5 Torr; total pressure, 10 Torr (made up of N_2O and halocarbon). The ratio of halocarbon to N_2O , [HC]/[N_2O], was varied between 0.5 and 3.0.

Concentrations of halocarbon and of N_2O remaining in the cell were followed, as a function of time, by infra-red spectrometry (Perkin-Elmer model 257 spectrometer).

Results and Discussion

With the exception of experiments with CF_4 (where no reaction was observed), changes in halocarbon and N₂O concentrations were followed for photolysis times between 20 and 60 hours. Product peaks were also observed by infra-red absorption, and identified [2, 3] as COF_2 . No halocarbon was lost when halocarbon alone was irradiated.

If the only loss process for N_2O and for halocarbon is reaction with $O(^1D)$ atoms:

$$O(^{1}D)$$
 + halocarbon $\xrightarrow{k_{1a}}$ Products (1a)

$$\xrightarrow{\kappa_{1b}} O(^{3}P) + halocarbon$$
 (1b)

$$O(^{1}D) + H_{2}O \qquad \xrightarrow{\kappa_{2a}} N_{2} + O_{2}$$
 (2a)

$$\xrightarrow{k_{2b}} 2NO$$
 (2b)

then the loss of halocarbon, Δ [HC], is related to the loss of N₂O, Δ [N₂O], and the original concentrations of halocarbon and N₂O by:

$$\frac{\Delta [\text{HC}]}{\Delta [\text{N}_2\text{O}]} = \frac{k_{1a}}{k_2} \frac{[\text{HC}]}{[\text{N}_2\text{O}]}$$

where $k_2 = k_{2a} + k_{2b}$.

Values of Δ [HC]/ Δ [N₂O] and [HC]/[N₂O] are plotted in Fig. 1. The least squares gradients, k_{1a}/k_2 , are shown in Table 1. No change in the value of k_{1a}/k_2 could be detected on (a) increase in total gas pressure, up to a maximum of 30 Torr; (b) addition of a six-fold excess of NO₂; (c) addition of 5 Torr of NO (a product of NO₂ photolysis) to a standard CF₂Cl₂/N₂O mixture.

Trial experiments with CF_2Cl_2 using photolysis of ozone ($\lambda = 254 \text{ nm}$) as the source of $O(^1D)$ gave k_{1a}/k_2 equal to 1.1 ± 0.3 and 1.6 ± 0.3 for values

Fig. 1. Plots of the ratio of the changes in halocarbon and in nitrous oxide concentrations as a function of the initial halocarbon to nitrous oxide concentration ratio. (a): \times , CF₂Cl₂; •, CF₂HCl; \circ , CF₂H₂· (b): •, CF₃CHCl₂; \times , CF₃CH₂Cl; \circ , CF₃CH₃. (c): \times , CF₂ClCH₂Cl; \circ , CF₂ClCH₃; •, CF₃CHF₂.

of our work and that of Pitts *et al.* [2], on the one hand, with that of Jayanty *et al.* and Fletcher and Husain, on the other, is also of limited validity. of [HC]/[N₂O] of 1.1 and 1.7. These results are thus identical, within the experimental error, to those obtained using N₂O photolysis of the O(¹D) source.

Other published data are compared with our own in Table 1. The experiments of Jayanty *et al.* [4], and the direct $O(^{1}D)$ quenching measurements of Fletcher and Husain [5], yield rate constants, $k_{1} (= k_{1a} + k_{1b})$, for overall deactivation of $O(^{1}D)$. Since only lower limits are available for the ratio $k_{1a}/k_{1} (\ge 0.33$ for CF₃Cl and CFCl₃, ≥ 0.40 for CF₂Cl₂ [6]), comparison

Compound	k _{1a} /k ₂		k ₁ /k ₂		$\frac{10^{10}k_{1a}}{/\text{cm}^3\text{molec.}^{-1}}\text{s}^{-1}$
	This work	Pitts <i>et al.</i> [2]	Jayanty et al. [4]	Fletcher and Husain [5]†	This work†
CF ₄	No reaction	0.1		0.14 ± 0.1	
CF ₃ Cl			0.52	1.1 ± 0.1	
CF ₂ Cl ₂	1.4 ± 0.3	2.4 ± 0.3	1.3 ± 0.1	2.2 ± 0.1	3.1 ± 0.7
CFC13		2.65 ± 0.4	1.5	2.5 ± 0.2	
CCl ₄			2.1	3.9 ± 0.4	
CHF ₂ Cl	0.8 ± 0.2	1.6 ± 0.2		1.1 ± 0.1	1.8 ± 0.4
CHFCl ₂				2.2 ± 0.1	
CHF ₃				0.44± 0.04	
CH ₂ F ₂	0.4 ± 0.2				0.8 ± 0.4
CF2Cl-CF2Cl		1.5 ± 0.2		1.7 ± 0.1	
$CF_2Cl-CFCl_2$		2.5 ± 0.3		2.4 ± 0.2	
CF2Cl-CH2Cl	1.4 ± 0.3				3.0 ± 0.7
CF3-CH2CI	1.3 ± 0.3				2.9 ± 0.7
CF ₃ -CH ₃	0.5 ± 0.1				1.0 ± 0.2
CF ₃ -CF ₂ H	0.4 ± 0.1				0.8 ± 0.2
CF ₃ CHCl ₂	1.9 ± 0.3				4.3 ± 0.7
CH ₃ CF ₂ Cl	1.2 ± 0.3				2.7 ± 0.7

Rate data for the reaction of $O(^{1}D)$ with halocarbons

 $\text{Based on } k_2 = (2.2 \pm 0.2) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} [7].$

Nevertheless, where comparisons are possible (CF₂Cl₂ and CHF₂Cl), our values of k_{1a}/k_2 and those of Fletcher and Husain suggest that k_{1a}/k_1 is, in fact, at least as large as 0.6 - 0.7.

The last column of Table 1 gives our values for k_{1a} derived from a value of $k_2 = 2.2 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ [7]. It is apparent that for species such as CF₂Cl₂ or CF₃CHCl₂ the rate constant is approaching the gas kinetic limit. As might be expected, presence of chlorine in the halocarbon favours the reaction, and the presence of fluorine tends to reduce k_{1a} .

We wish to thank Imperial Chemical Industries Limited (Mond Division) for technical and financial assistance.

- 1 M. J. Molina and F. S. Rowland, Rev. Geophys. Space Phys., 13 (1975) 1.
- 2 J. N. Pitts, H. L. Sandoval and R. Atkinson, Chem. Phys. Lett., 29 (1974) 31.
- 3 A. H. Nielsen, T. G. Burke, P. J. H. Woltz and E. A. Jones, J. Chem. Phys., 20 (1952) 596.
- 4 R. K. M. Jayanty, R. Simonaitis and J. Heicklen, J. Photochem., 4 (1975) 381.
- 5 I. S. Fletcher and D. Husain, J. Phys. Chem., 80 (1976) 1837.
- 6 H. M. Gillespie and R. J. Donovan, Chem. Phys. Lett., 37 (1976) 468.
- 7 R. F. Heidner, III and D. Husain, Int. J. Chem. Kinet., 5 (1973) 819.

TABLE 1